Estimation of wall shear stress in bypass grafts with computational fluid dynamics method.

نویسندگان

  • L Goubergrits
  • K Affeld
  • E Wellnhofer
  • ZurbrüggR
  • T Holmer
چکیده

Coronary artery bypass graft (CABG) operation for coronary artery disease with different types of grafts has a large clinical application world wide. Immediately after this operation patients are usually relieved of their chest pain and have improved cardiac function. However, after a while, these bypass grafts may fail due to for example, neointimal hyperplasia or thrombosis. One of the causes for this bypass graft failure is assumed to be the blood flow with low wall shear stress. The aim of this research is to estimate the wall shear stress in a graft and thus to locate areas were wall shear stress is low. This was done with the help of a blood flow computer model. Post-operative biplane angiograms of the graft were recorded, and from these the three-dimensional geometry of the graft was reconstructed and imported into the computational fluid dynamics (CFD) program FLUENT. The stationary diastolic flow through the grafts was calculated, and the wall shear stress distribution was estimated. This procedure was carried out for one native vessel and two different types of bypass grafts. One bypass graft was a saphenous vein and the other one was a varicose saphenous vein encased in a fine, flexible metal mesh. The mesh was attached to give the graft a defined diameter. The computational results show that each graft has distinct areas of low wall shear stress. The graft with the metal mesh has an area of low wall shear stress (< 1 Pa, stationary flow), which is four times smaller than the respective areas in the other graft and in the native vessel. This is thought to be caused by the smaller and more uniform diameter of the metal mesh-reinforced graft.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blood flow simulations in patient-specific coronary bypass grafts

The purpose of this paper was to investigate the hemodynamic parameters associated with the blood flow in failed coronary venous bypass grafts using a computational fluid dynamics (CFD) technique. A narrowed section creates bypass graft constriction and disturbed flow. This change of the flow direction alters significantly the local hemodynamic parameters. In this paper, a patient specific thre...

متن کامل

Impact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion

The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...

متن کامل

Numerical analysis of coronary artery bypass grafts: An over view

Arterial bypass grafts tend to fail after some years due to the development of intimal thickening (restenosis). Non-uniform hemodynamics following a bypass operation contributes to restenosis and bypass failure can occur due to the focal development of anastomotic intimal hyperplasia. Additionally, surgical injury aggravated by compliance mismatch between the graft and artery has been suggested...

متن کامل

Computational fluid dynamics study and GA modeling approach of the bend angle effect on thermal-hydraulic characteristics in zigzag channels

In the study, the thermal-hydraulic performance of the zigzag channels with circular cross-section was analyzed by Computational Fluid Dynamics (CFD). The standard K-Ꜫ turbulent scalable wall functions were used for modeling. The wall temperature was assumed constant 353 K and water was used as the working fluid. The zigzag serpentine channels with bend angles of 5 - 45° were studied for turbul...

متن کامل

Gaurav Varshney

The objective of this study is to investigate the flow patterns of blood and the distribution of shear stress in a complete bypass anastomosis model in coronary artery using computational fluid dynamics. Blood is considered as Newtonian, homogeneous and incompressible fluid. Using suitable boundary conditions, the continuity and momentum conservation equations are solved using Finite Element Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The International journal of artificial organs

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2001